2024-03-14 13:29:13 | 喜车网
^^^e^(ix)=cosx+isinx
e^(-ix)=cosx-isinx
所以cosx=[e^(ix)+e^(-ix)]/2
所以原式=[e^(iπ/7)+e^(-iπ/7)+e^(3iπ/7)+e^(-3iπ/7)+e^(5iπ/7)+e^(-5iπ/7)]/2
分子是等比数列,首项是e^(-5iπ/7),q=e^(2iπ/7),有六项
所以原式=e^(-5iπ/7)*[1-e^(12iπ/7)]/2[1-e^(2iπ/7)]
=[1-e^(iπ)e^(5iπ/7)]/{2e^(5iπ/7)[1-e^(2iπ/7)]}
因为e^(iπ)=-1
所以原式=[1+e^(5iπ/7)]/{2[e^(5iπ/7)+1]}=1/2
欧拉定理
对于互质的整数a和n,有aφ(n) ≡ 1 mod n喜车网
证明:
首先证明下面这个命题:
对于集合Zn={x1,x2,...,xφ(n)},考虑集合
S = {ax1 mod n,ax2mod n,...,axφ(n)mod n}
则S = Zn
1) 由于a,n互质,xi也与n互质,则axi也一定于p互质,因此
任意xi,axi mod n 必然是Zn的一个元素
2) 对于Zn中两个元素xi和xj,如果xi ≠ xj
则axi mod n ≠ axi mod n,这个由a、p互质和消去律可以得出。
所以,很明显,S=Zn
既然这样,那么
(ax1 × ax2×...×axφ(n))mod n
= (ax1 mod n × ax2mod n × ... × axφ(n)mod n)mod n
= (x1 × x2 × ... × xφ(n))mod n
考虑上面等式左边和右边
左边等于(aφ(n) × (x1 × x2 × ... × xφ(n))mod n) mod n
右边等于x1 × x2 × ... × xφ(n))mod n
而x1 × x2 × ... × xφ(n))mod n和p互质
根据消去律,可以从等式两边约去,就得到:
aφ(n) ≡ 1 mod n
推论:对于互质的数a、n,满足aφ(n)+1 ≡ a mod n
费马定理
a是不能被质数p整除的正整数,则有ap-1 ≡ 1 mod p
证明这个定理非常简单,由于φ(p) = p-1,代入欧拉定理即可证明。
同样有推论:对于不能被质数p整除的正整数a,有ap ≡ a mod p
[编辑本段]欧拉公式
简单多面体的顶点数V、面数F及棱数E间有关系
V+F-E=2
这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。
2024-01-14 03:21:00
2024-01-14 08:34:14
2024-01-04 04:13:22
2023-08-26 11:33:48
2024-01-13 13:54:46
2024-01-05 16:51:31